

Microwave Instrument Update

Bjorn Lambrigtsen Frank Sun Steve Broberg

Jet Propulsion Laboratory
California Institute of Technology

Topics

- Instrument status
- Changes for V4
- Scan bias analysis
- Plans for V5

Microwave Instrument Status

AMSU-A

- Two channels have experienced slowly declining gain
- Recently many -A2 temperature sensors became very noisy

HSB

- Still not working
 - The plan is to put in place a procedure to try periodic re-starts
 - Procedure expected to be in place early next year
 - Last "kick-start" attempt was on January 16, 2004

AMSU Gain Variation: Ch. 4-6

(More in backup slides)

Channel 4 shows negligible gain change

Channel 5 shows 8%/year gain decline

Channel 5 also showed 5% drop after solar flare

Channel 6 shows 4%/year gain decline

Shown: calibration coefficient $a_1 \approx 1/gain$

AMSU-A2 Anomalous Temperatures

All instrument-PRT readings became very noisy on November 16 (Also "PRT Ref Voltage")
All warm load readings are still good

This is currently under investigation at JPL and NGES

No Anomalous Brightness Temperatures

Start of anomaly is not discernible

Preliminary Anomaly Assessment

- No effect on calibration or Tb's can be discerned
- This is expected:
 - Only "RF shelf T" is used besides the warm load T's
 - It is used to interpolate lookup tables
 - Warm load correction
 - Nonlinearity correction
 - Both corrections are very small
 - A 3 K T-error translates into << 1 K
- Nevertheless, we may put in place a quick fix:
 - Either smooth RF-shelf-T
 - Downside: requires a very wide window (many granules)
 - Or find a substitute T
 - Looking at "RF-shelf-T" ≈ a + b Warm-load-T (by regression)
 - Or use Passive-Analog instrument-T
 - Downside: Sampled only every 8th scan line

Microwave L1b Changes in V4

Only minor changes

- Two Tb slots (implemented in V3.5)
 - Antenna temperatures (Ta): radiometrically calibrated Tb's
 - Brightness temperatures (Tb): scan bias corrected Ta
 - Tb is currently identical to Ta (awaiting bias correction)
- Narrower window for "moon-in-FOV" flag
- Fix for data gaps when moon appears in cold-cal FOV
 - All cold-cal looks affected when moon is in FOV
 - Therefore: cannot compute calibration coefficients
 - Normally: use last valid coefficients
 - But: coefficients do not get carried across granule boundaries
 - Moon-in-FOV can last for up to ~2 granules
 - This has caused data gaps for prolonged moon encounters
 - Fix: bridge across granule boundaries

AMSU Scan Bias Analysis Using AIRS

- Objective is definitive scan bias characterization
 - Identify best "truth" for "obs-sim"
 - Determine empirical relative scan bias and absolute nadir bias
 - Compare with modeled scan bias
 - Compare with AIRS
- All analysis shown is for clear/ocean/±30°/Sep.6'02

Scan Bias Example: Channel 6

Scan Bias Example: Channel 12

Equivalent AIRS Channels

Tb at peak of weighting function - Weighting functions for standard atmosphere

AMSU & AIRS obs & sim vs. scan: Ch. 6

AMSU & AIRS obs & sim vs. scan: Ch. 12

(More in backup slides)

AMSU & AIRS obs-calc summary: Nadir

Sim[ECMWF] vs. Sim[AIRS]: Ch. 6

Sim[ECMWF] vs. Sim[AIRS]: Ch. 12

(More in backup slides)

obs-sim[AIRS] vs. obs-sim[ECMWF]

(More in backup slides)

Channel 13

Scan Bias Correction Coefficients

(More in backup slides)

Channel 6

Conclusions and Further Work

- Empirical bias corrections look good
- May be "best" tuning, but need to be tested on wider data
 - Coefficients derived from "clear/ocean/±30°/Sep.6'02"
 - Tested on "all/±80°/Sep.6'02"
- Coefficients could be provided to users as ancillary tables
- However:
 - For climate use, bias corrections MUST be physically based
 - "Tuning" puts data independence at risk
 - Climate signals could be "tuned" out
 - Therefore
 - We should only put empirical correction into L1b as a last resort
 - We may provide empirical coefficients as ancillary tables
- For V5 the goal is to derive BETTER physically based coefficients
 - Try to get CLOSER agreement with empirical coefficients
 - Then use mostly model-based + a few empirical substitutes

Backup Slides

- Gain variations
- AMSU & AIRS obs & sim vs. scan
- Sim[AIRS] vs. Sim[ECMWF]
- Obs-Sim: AIRS vs. ECMWF
- Scan bias correction coefficients
- Empirical scan bias correction

AMSU Gain Variation: Ch. 1-3

Channels 1-2 show only minor orbital gain variation

Channel 3 shows minor gain decline: about 1% per year

Shown: calibration coefficient $a_1 \approx 1/gain$

AMSU Gain Variation: Ch. 7-9

Shown: calibration coefficient a₁ ≈ 1/gain

Only minor gain changes for these channels

AMSU Gain Variation: Ch. 10-12

Shown: calibration coefficient a₁ ≈ 1/gain

Only minor gain changes for these channels

AMSU Gain Variation: Ch. 13-15

Shown: calibration coefficient a₁ ≈ 1/gain

Negligible gain changes for these channels

AMSU & AIRS obs & sim vs. scan: Ch. 5

obs

obs-sim[AIRS] vs. obs-sim[ECMWF]

obs-sim[AIRS] vs. obs-sim[ECMWF]

obs-sim[AIRS] vs. obs-sim[ECMWF]

